

Researchers:

ASSOC. PROF. DR. SUZYLAWATI ISMAIL
Faraziehan Senusi
Shazlina Abd. Hamid

CoMembrane: Nature-Inspired Coating of Membrane for Emulsion Oil Separation

COPYRIGHT & PATENT APPLICATIONS
PATENT SEARCH: NOVEL, INVENTIVE
& INDUSTRIAL APPLICABLE

CoMembrane

Underwater Oil Contact Angle of CoMembrane

-Pristine %R

CoMembrane

• CoMembrane is an invention of the coating process inspired by mussel foot adhesives for modification of membrane surfaces material.

PROBLEM STATEMENTS

- Increasing of oil concentrations and stable emulsion droplets in effluent due to improper dumping will affect the environment and human health.
- The commercial organic polymers have the drawbacks of materials on the hydrophobicity properties which tends into severe fouling problems.
- The conventional modification methods are complex and involve high equipment cost.

- CoMembrane is formulated using the natural and low cost of polyphenolic derived from plants.
- CoMembrane provides hydrophilic and underwater oleophobic surface properties with low oil adhesion.

- Copyright and Patent applications.
- · Patent Search: Novel, Inventive & Industrial Applicable.

USEFULNESS AND APPLICATION

- The process can be applied onto commercialize membrane or own fabricated membrane.
- The process can be implemented for any types of membrane modules.
- It has good chemical stability and high permeability with efficient removal of emulsion oil.

STATUS OF INVENTION

Lab-Scale.

COMMERCIAL POTENTIAL

- The process can be applied without high-end equipment and no new equipment required for the existing plant.
- The facile and low cost process for membrane surface modification method.
- The results of CoMembrane comparable to commercial membrane product.

POTENTIAL PARTNERS

• Membrane fabricator industries and environmental service companies.

KNOWLEDGE MANAGEMENT

- This project is financially supported by E-Science Fund Grant (305/PJKIMIA/6013394).
- Outputs: Scientific Publications.

Permeate flux and removal efficiency at different TMP

ASSOC. PROF. DR. SUZYLAWATI ISMAIL
School of Chemical Engineering, Engineering Campus
Universiti Sains Malaysia, Penang, MALAYSIA
Tel: +604-599 6458 Fax: +604-599 6908 E-mail: chsuzy@usm.my